Module structure, Signatures Paragraphs, Declarations Formulas, Expressions Operators, Miscellaneous

Module structure

// module declaration
module qualified/name 

// imports
open other_module
open qual/name[Param] as Alias

// paragraphs (any order)
sig name ...
fact name { formulas }
pred name { formulas }
assert name { formulas }
fun name [Param] : bounding-expr { 
  body-expression 
}
run pred-name for scope
check assertion for scope

Signatures

General

sig qualified-name ... {
  field declarations
}
// or ...
sig qualified-name ... {
  field declarations
}{
  signature facts
}

Given sig S { ... } { F }, F is interpreted as if the model read sig S { ... } fact { all this : S | F′ }, where F′ is like F but each name f is expanded to this.f if f names a field of S. Write @f to suppress the expansion.

Top-level type signatures

sig qname { ... }

Subtype signatures

sig qname extends superclass { ... }

N.B. If A and B each extend C, then A and B are disjoint.

Subset signatures

sig qname in sup { ... }
sig qname in sup1 + sup2 + ... { ... }

N.B. Subset signatures are not necessarily pairwise disjoint, and may have multiple parents.

Multiple signatures

sig qname1, qname2, ... { ... }

sig qname1 { ...} sig qname2 { ... } ...

Signature multiplicities

one sig qname1 { ... }
lone sig qname1 { ... }
some sig qname1 { ... }

The keywords one, lone, some constrain the signature to have exactly one, at most one, or at least one member.



Alloy 4 quick reference summary by C. M. Sperberg-McQueen, Black Mesa Technologies LLC (v1.1 2013-07-23) ©2013 CC BY-SA 3.0.


Paragraphs

Facts

fact name { formulas }
fact { formulas } // name optional

Predicates, Run

Predicates are either true or false; they can take arguments.

pred name { formulas }
pred name [decl, decl2 ...]{ formulas }

Use run to request an instance satisfying the predicate:

run name

Optionally specify scope (defaults to 3):

run name for 2 
run name for 2 but 1 sig1, 5 sig2

Assertions, Check

assert name { formulas }

Unlike predicates, assertions don't bind arguments.

Use check to look for counter-examples:

check name for 2 but 1 sig1, 5 sig2

Functions

fun name [decl, ...] : e1 { e2 }

The body expression e2 is evaluated to produce the function value; the bounding expression e1 describes the set from which the result is drawn.


Declarations

Fields of signatures, function arguments, predicate arguments, comprehension variables, quantified variables all use same declaration syntax:

Simple declaration

name : bounding-expression

Constrains values to be a subset of the value of the bounding expression.

Multiple declaration

name1, name2 : bounding-expression
// or
disj name1, name2 : bounding-expression

In field declarations, disj can also be on the right:

sig S {f : disj e}

Requires distinct S atoms to have distinct f values; ≡ all a, b : S | a != b implies no a.f & b.fall disj a, b : S | disj [a.f, b.f]

Multiplicities

Default multiplicity is one:

name1 : bounding-expression
// equivalent to:
name1 : one bounding-expression

Other multiplicities:

name2 : lone expr // at most one
name3 : some expr // one or more
name4 : set expr // zero or more

Relations

Bounding expression may denote a relation:

r : e1 -> e2

Multiplicities in declaring relations:

r : e1 -> one e2 // total function
r : e1 -> lone e2 // partial function
r : e1 one -> one e2 // 1:1 (bijection)

Formulas

Formulas (aka constraints) are boolean expressions. Primitive boolean operators include the comparison operators:

set1 in set2
set1 = set2
scalar = value

Expression quantifiers make booleans out of relational expressions.

some relation-name
no r1 & r2 // etc.

Quantified expressions are formulas:

some var : bounding-expr | expr
all var : bounding-expr | expr
one var : bounding-expr | expr
lone var : bounding-expr | expr
no var : bounding-expr | expr
True iff expr is true for some, all, exactly one, at most one, or no elements of the set denoted by bounding-expr

The logical operators (not, and, or, implies, iff) can form compound booleans; most of them apply only to boolean expressions.

boolean and boolean2 
not boolean or boolean2 
boolean implies boolean2 // etc.

Conditional expressions

boolean implies expression
boolean implies expr1 else expr2

Let expressions

let decl, decl2 ... | expression
let decl, decl2 ... { formulas }

Relational expressions

Simple expressions: qualified name, @ + simple name, or this.

Constants: none (the empty set), univ (the universal set), iden (the identity function).

Unary compound expressions: op r where op is a unary relational operator (~, *, ^) and r is binary.

Binary compound expressions: a op b where op is a binary relational operator (., &, +, -, <:, :>, ++) and a, b are n-ary relations.

Arrow expressions: r1 [mult|set] -> [mult|set] r2.


Integer expressions

Numeric constant: [1-9][0-9]*

Arithmetic operators (plus, minus, mul, div, rem) apply only to integer expressions. They name ternary relations, so x + 1 can be written as any of: plus[x][1], plus[x,1], x.plus[1], or 1.(x.plus).


Constants, predefined identifiers

Predefined functions

disj[ A, B, ... ] (true iff all arguments are pairwise disjoint)

sum[ set of Int ] (returns sum of argument).

Relations

univ (universal set), none (empty set), iden (identity relation).

Operators in precedence order

a, b, c are n-ary relations (n ≠ 0), f a functional relation, r, r1, r2 are binary relations, s is a set (unary relation). N.B. ≡ is standard mathematical syntax, not Alloy syntax.

Unary operators: ~r (transpose / inverse), ^r (positive transitive closure), *r (reflexive transitive closure)

Dot join: a.b

Box join: b[a] (also for function application, f[t]). N.B. dot binds tighter than box, so a.b[c](a.b)[c]

Restriction: s <: a (domain restriction), a :> s (range restriction)

Arrow product: a -> b (Cartesian product)

Intersection: a & b (intersection†)

Override: r1 ++ r2 (relational override)

Cardinality: #a (how many members in a?‡)

Union, difference: a + b (union†), a - b (difference†)

Expression quantifiers, multiplicities: no, some, lone, one, set

Comparison negation: not, !

Comparison operators: in, =, <, >, =, =<, =>

Logical negation: not, !

Conjunction: and, &&

Implication: implies, else, =>

Bi-implication: iff, <=>

Disjunction: or, ||

Let, quantification operators: let, no, some, lone, one, sum

a and b must have matching arity

‡ Arithmetic overflow may occur.


Associativity:

Implication associates right:
p => q => rp => (q => r)

else binds to the nearest possible implies:
p => q => r else sp => (q => r else s)

All other binary operators associate left:
a.b.c(a.b).c


Lexical structure

Characters: any ASCII character except \ ` $ % ?

Alloy is case-sensitive

Tokenization: any whitespace or punctuation separates tokens, except that => >= =< -> <: :> ++ || // -- /* */ are single tokens (so: != can be written ! =)

Comments: from // to end of line; from -- to end of line; /* to next */ (no nesting).

Identifiers (names): letters, numerals, underscore, quote marks (no hyphens)

Qualified names (qnames): sequence of slash-separated names, optionally beginning with this (e.g. xyz, this/a/b/c, util/ordering)

Reserved words: abstract all and as assert but check disj else exactly extends fact for fun iden iff implies in Int let lone module no none not one open or pred run set sig some sum univ

Namespaces: 1 module names and aliases; 2 signatures, fields, paragraphs (facts, predicates, assertions, functions), bound variables; 3 command names. Names in different namespaces do not conflict; variables are lexically scoped (inner bindings shadow outer). Otherwise, no two things can share a name.